Search results for "Form factors"
showing 10 items of 16 documents
Complete Measurement of the Λ Electromagnetic Form Factors.
2019
The exclusive process e+e−→ΛΛ¯, with Λ→pπ− and Λ¯→p¯π+, has been studied at s=2.396 GeV for measurement of the timelike Λ electric and magnetic form factors, GE and GM. A data sample, corresponding to an integrated luminosity of 66.9 pb−1, was collected with the BESIII detector for this purpose. A multidimensional analysis with a complete decomposition of the spin structure of the reaction enables a determination of the modulus of the ratio R=|GE/GM| and, for the first time for any baryon, the relative phase ΔΦ=ΦE−ΦM. The resulting values are R=0.96±0.14(stat)±0.02(syst) and ΔΦ=37°±12°(stat)±6°(syst), respectively. These are obtained using the recently established and most precise value of …
Neutral and charged pion properties under strong magnetic fields in the NJL model
2019
In the framework of the Nambu-Jona-Lasino (NJL) model, we study the effect of an intense external uniform magnetic field on neutral and charged pion masses and decay form factors. In particular, the treatment of charged pions is carried out on the basis of the Ritus eigenfunction approach to magnetized relativistic systems. Our analysis shows that in the presence of the magnetic field three and four nonvanishing pion-to-vacuum hadronic form factors can be obtained for the case of the neutral and charged pions, respectively. As expected, it is seen that for nonzero magnetic field the π⁰ meson can still be treated as a pseudo Nambu-Goldstone boson, and consequently the corresponding form fact…
Electromagnetic form factors of the nucleon in a relativistic quark pair creation model
2001
We study the effects of the | qqq q\bar{q} > component of the hadronic wave function on the description of the electromagnetic structure of the nucleon. Starting with a qqq baryonic wave function which describes the baryonic and mesonic low energy spectrum, the extra q\bar{q} pair is generated through a relativistic version of the 3P_0 model. It is shown that this model leads to a renormalization of the quark mass that allows one to construct a conserved electromagnetic current. We conclude that these dynamical relativistic corrections play an important role in reproducing the Q2 dependence of the electromagnetic form factors at low Q^2.
Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment
2017
The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, $R_{2\gamma}$, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of $\approx 20\degree$ to $80\degree$. The relative luminosity between the two beam species was mo…
Matter Dependence of the Four-Loop Cusp Anomalous Dimension
2019
We compute analytically the matter-dependent contributions to the quartic Casimir term of the four-loop light-like cusp anomalous dimension in QCD, with $n_f$ fermion and $n_s$ scalar flavours. The result is extracted from the double pole of a scalar form factor. We adopt a new strategy for the choice of master integrals with simple analytic and infrared properties, which significantly simplifies our calculation. To this end we first identify a set of integrals whose integrands have a dlog form, and are hence expected to have uniform transcendental weight. We then perform a systematic analysis of the soft and collinear regions of loop integration and build linear combinations of integrals w…
Baryon transition form factors at the pole
2016
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore…
Electromagnetic Structure of the Neutron from Annihilation Reactions
2022
The investigation of the fundamental properties of the nucleon is one of the most important topics in the modern hadron physics. Its internal structure and dynamics can be studied through the measurement of electromagnetic form factors which represent the simplest structure observables and serve as a test ground for our understanding of the strong interaction. Since the first attempt to measure the time-like form factors of the neutron, only four experiments published results on its structure from annihilation reactions. Due to the lack of statistics and experimental challenges, no individual determination of the form factors of the neutron has been possible so far. Modern developments of e…
Strangeness-changing scalar form factors
2001
30 páginas, 2 tablas, 10 figuras.-- arXiv:hep-ph/0110193v1
High-Precision Determination of the Electric and Magnetic Form Factors of the Proton
2010
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.
Electromagnetic structure of few-nucleon ground states
2015
Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled…